

HEC Hydrogen Sessions

Utility Scale Hydrogen Power Generation May 28, 2021

Brad Bradshaw President, Velerity President, Hydrogen Energy Center brad@velerity.com

Agenda

www.velerity.com

Hydrogen Energy Center

HEC is a nonprofit professional society focused on accelerating the hydrogen as an enabling solution for renewable energy

HEC provides public forums, conducts research and implements projects focused on accelerating the clean energy future

Consider supporting this important effort by becoming a member:

- Influence the course of renewable hydrogen energy technology and policy.
- Be a part of projects that really build hydrogen solutions.
- Have full access to white papers, technical reports, and meeting minutes from our projects and from other organizations.

Immerse yourself in the hydrogen "goings-on" by connecting with

developments & networking with people who are collectively driving the

hydrogen "bus".

Upcoming Hydrogen Sessions

- May 28, 2021 Grid Scale Hydrogen Power Generation
- June 4, 2021 Building a Global Trade in Hydrogen
- June 11, 2021 Electrolysis and Water Splitting
 - June 18, 2021 Hydrogen Production with Carbon Separation
 - June 25, 2021 Wind to Hydrogen

Velerity Services

www.velerity.com

Velerity - Illustrative Clients

CINERGY ®	ABB	Sierra Pacific	National Grid
ConEdison, inc.	Conoco	NSTAR	elpaso
Trans Canada In business to deliver ™	conectiv	Duke Energy.	Dominion
Reliant Energy™	Promigas	Allegheny	FPL
Beacon POWER	DQE	Colonial Pipeline Company	NOVA SCOTIA POWER An Emera Company
www.velerity.com	Tokyo Electric Power Company	Sofe Hydrogen, LLC Sth Its quiet power	

The United States electric power sector has led the reduction in carbon emissions among all the economic sectors

Source: Environmental Protection Agency, U.S. Greenhouse Gas Inventory Data Explorer (cfpub.epa.gov/ghgdata/inventoryexplorer/index.html)

The mix of power generation shifted from coal to natural gas, as fracking drove natural gas prices down

Drivers of utility scale hydrogen power generation

Increasing Pressures to Accelerate Power Grid Decarbonization	Efforts are underway to decarbonize the electric grid by 2035, creating an opportunity for a carbon free fuel-based dispatchable solution such as hydrogen
Increasing Proportion of Variable Renewable Energy	Creating challenges for grid stability, increasing interest in zero carbon dispatchable power generation solutions such as hydrogen
Low RE Power Costs & Curtailment Enabling Low Cost Hydrogen	Solar energy has been termed the lowest cost power generation technology in history, enabling cost effective hydrogen production using electrolysis
RE Oversupply & Mismatch w/Demand Needs Long Duration Storage	For long duration storage, lithium-ion is too expensive and pumped hydro is limited. Salt dome hydrogen storage provides a cost- effective seasonal storage solution.
Combined Cycle Gas Turbines Provide High Efficiency Solution for H2	CCGT's provide a pathway for hydrogen power generation with efficiencies potentially as high as 63%

Four use cases dominate hydrogen power generation

Twelve grid scale hydrogen power plants around the world, either operating or in advanced planning stages, have been identified

Project Type	Number of Projects	Size MW
Појсестурс	Појсеез	5120, 10100
By-product hydrogen	6	72
RE plus H2 storage	3	1,855
SMR plus CCS	2	1,340
Unknown	1	80
Total	12	3,347

Half of the twelve identified hydrogen generation projects utilize excess hydrogen from industrial processes

		Size,	Hydrogen	Generation
Project	Location	MW	Source	Technology
Bloom Changwon	Changwon, Korea	1.8	Chlor-alkali	SOFC Fuel Cell
Fusina	Fusina, Italy	16	Versalis Cracker	GE Turbine
Grasshopper	Delfzijl, Netherlands	1	Chlor-alkali	Nedstack PEM Fuel Cell
Hanwha Energy	Seosan, Korea	50	Chlor-alkali	Fuel Cells
Ulsan	Ulsan, Korea	1	Chlor-alkali	Fuel Cell
Yingkou	Yingkou, China	2	Chlor-alkali	PEM Fuel Cell

Excess hydrogen from chlor-alkali plants is used for power generation and liquid hydrogen production for merchant markets

Hydrogen volume	27	tons/day
Hydrogen price	1.00	\$/kg
Electricity production	75,085,714	kWh/yr
Electricity price	0.10	\$/kWh
Fuel cell size	10.08	MW
Fuel cell efficiency	50%	
Capital investment	\$ 19,159,664	
NPV @8%	\$ 159,893	

Three projects are storing hydrogen produced by renewable energy using electrolyzers, and producing power to optimize arbitrage

		Size		
Project	Location	MW	Hydrogen Source	Generation Technology
Intermountain Power	Delta, Utah	840	Renewable Energy	Mitsubishi Turbine
Port Lincoln	Port Lincoln, Australia	15	Renewable Energy	Turbine & Fuel Cell
Project Neo	New South Wales, Australia	1,000	Renewable Energy	Fuel Cells

These projects need a significant gap between the electricity purchase price and electricity sales price for the financials to pencil out

Renewable electricity purchase	1,000,000	MWh/yr
Renewable electricity cost	0.02	\$/kWh
Electricity production	423,360	MWh/yr
Electricity price	0.16	\$/kWh
Electrolyzer size	254	MW
Cavern hydrogen capacity	5,300	tons
Turbine size	107	MW
Capital investment	\$ 295,988,636	
NPV @8%	\$ 21,650,514	

Two plants plan to use natural gas reformation combined with carbon capture and sequestration for hydrogen power generation

		Size,		Generation
Project	Location	MW	Hydrogen Source	Technology
Keadby	Scunthorpe, United Kingdom	900	Natural Gas	Turbine
Magnum	Eemshaven, Netherlands	440	Natural Gas	Mitsubishi Power Turbine

All of the major turbine manufacturers have developed hydrogen ready turbines

- Baker Hughes
 - 100% H2 capability was demonstrated on GE10-1 with steam injection at Enel combined cycle power plant in Fusina, Italy

Baker Hughes NovaLT-16

General Electric

GE 7HA.03

Key focus of innovation is on NOx abatement and managing higher hydrogen flame speeds

- Mitsubishi Power
 - Offers three different types of combustors
 - Collaborating with Vattenfall, Gasunie and Equinor in the Vattenfall Magnum Carbon-Free Gas Power project, converting one of Magnum's three 440 MW CCGT to 100% hydrogen by 2025.

	Multi-nozzle combustor	Multi-cluster combustor	Duffusion combustor
Combustor type	Premix	Premix	Diffusion
Structure	Alt Fuel Premised Diffusion frame Premised nearcle	Air Puel Premixed form	Alr Fuel Water Water
Dilution for low NOx	Not applicable (Dry)	Not applicable (Dry)	Water, steam and $\ensuremath{N_2}$
Cycle efficiency	No efficiency drop because of no steam or water injection	No efficiency drop because of no steam or water injection	Efficiency drop occurs because stearn or water are injected to reduce NOx
Hydrogen co-firing ratio	Up to 30% vol.	Up to 100% vol. (under development)	Up to 100% vol.

Siemens

 Aeroderivative gas turbines up to 100% vol. H2 in diffusion combustion mode with NOx abatement using water.

www.velerity.com

Bloom Energy has demonstrated a niumble capacity, introducing a hydrogen SOFC fuel cell and SOFC electrolyzers for hydrogen production

Bloom Energy Hydrogen Energy Server

• Na	meplate Output	300 kW
• Fu	el	Hydrogen
• Eff	iciency	52%
• He	at Rate	6,824.28 Btu/kWh
• Hy	drogen consumption	18.81 kg/hr

Question and Answer

www.velerity.com

20