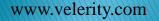


HEC Hydrogen Sessions

The Economics of Hydrogen Production April 8, 2022

Brad Bradshaw President, Velerity President, Hydrogen Energy Center brad@velerity.com

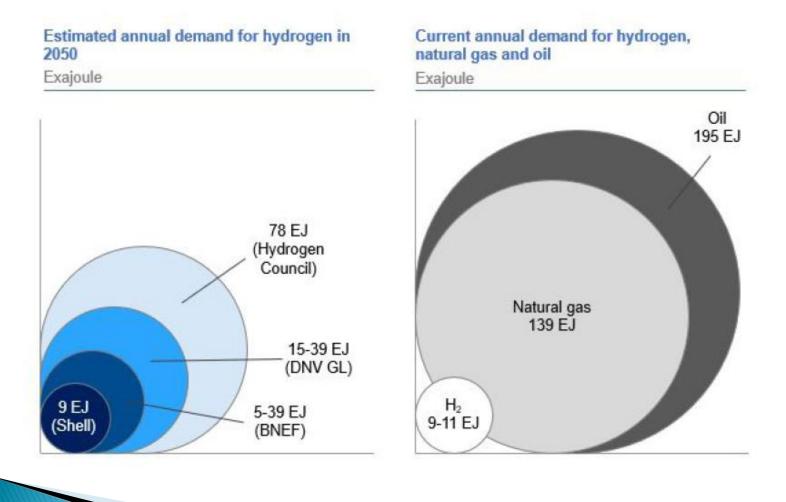

Hydrogen Energy Center

HEC is a nonprofit individual membership organization focused on accelerating the hydrogen as an enabling solution for a renewable energy future

HEC provides public forums, conducts research and implements projects focused on accelerating the clean energy future

Consider supporting this important effort by becoming a member

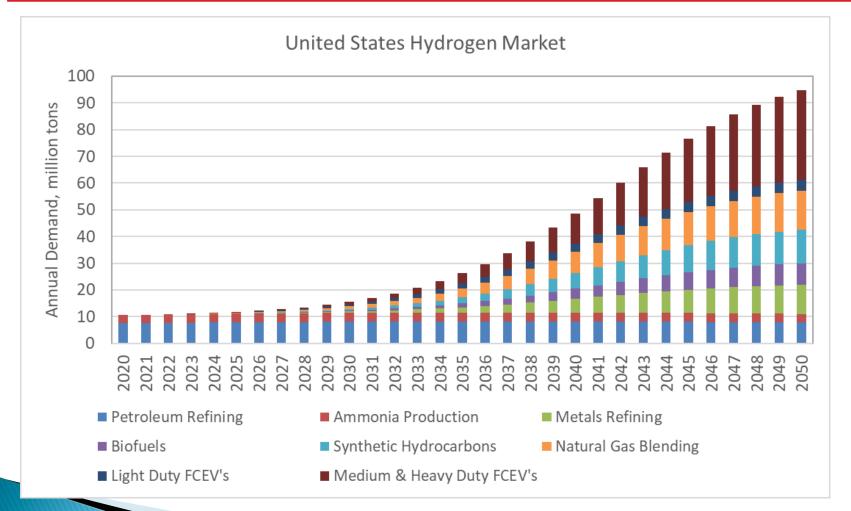
www.HydrogenEnergyCenter.org


Velerity provides consulting services to the energy industry

Hydrogen projects in the past twelve months have included:

- Conducted due diligence on a solid oxide fuel cell acquisition for a major mid-stream oil and gas company, covering markets, technology and operations
- Advised the CEO and senior leadership of a \$7 billion multi-national company on their hydrogen business strategy
- Advised the senior leadership of a hydrogen generation company on their business strategy and capital raise, resulting in \$5 million capital raise
- Prepared the market and competitive assessment and market entry strategy for a clean ammonia business for a hydrogen consortium
- Developed a detailed business and technology plan for carbon mitigation for a very large wastewater treatment plant, integrating green hydrogen for synthetic methane and methanol manufacturing

The hydrogen market is expected to grow significantly over the next few decades



Harvard's Belfor Center

www.velerity.com

The United States is expected to see significant growth in a range of applications for hydrogen

Source: NREL and Velerity

www.velerity.com

Current hydrogen production is dominated by steam methane reformation, with a significant cluster in Texas and Louisiana

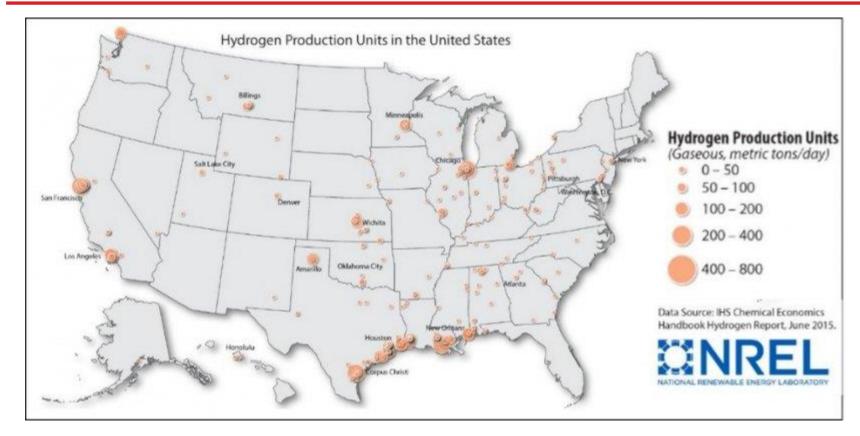
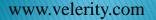
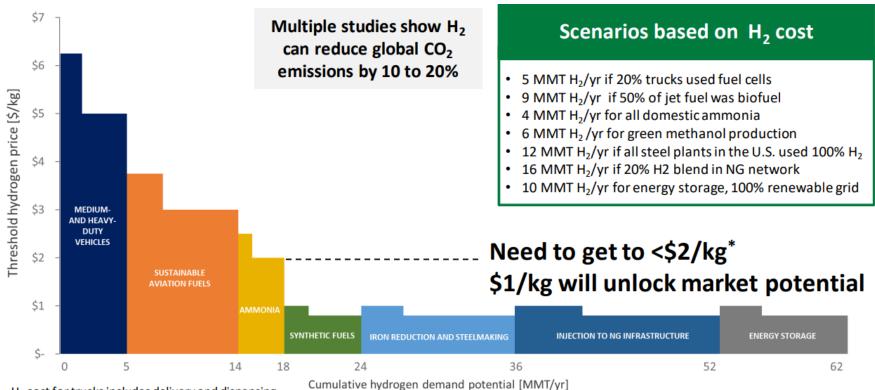



Figure from National Renewable Energy Laboratory. Data source: IHS Chemical Economics Handbook Hydrogen Report, June 2015.

There is a large number of pathways for hydrogen production

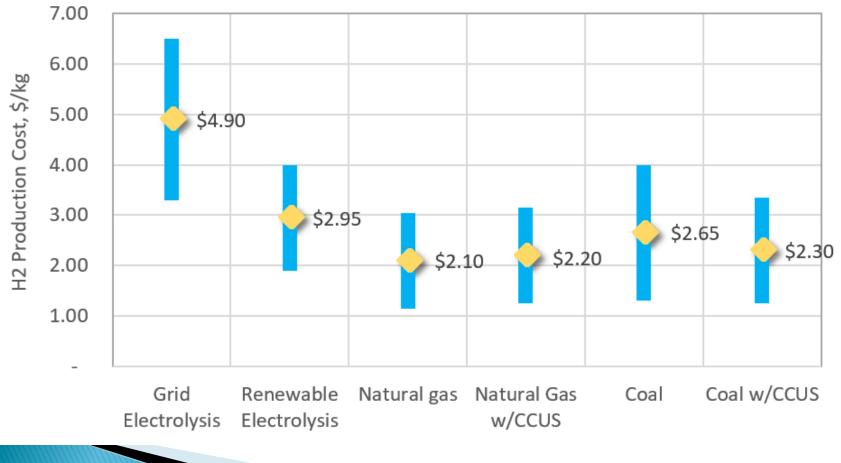


IEA 2019IEA (2019), "The Future of Hydrogen. Seizing today's opportunities. Report prepared by the IEA for the G20, Japan" Harvard's Belfor Center

www.velerity.com

Market success will require offering a competitive hydrogen price in specific markets

 $\rm H_2$ cost for trucks includes delivery and dispensing


 * H₂ could compete at \$1 to \$2/kg higher cost with a carbon price

Results based on preliminary analysis

DOE H2 Overview for PA Dept of Environment CCAC 8-24-21

The International Energy Agency has provided their own estimates of hydrogen costs depending on the source

Fully Loaded Hydrogen Production Costs

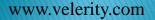
www.velerity.com

Source: The Future of Hydrogen, IEA

Today's analysis presents results associated with running a range of hydrogen production scenarios

- Purpose is to understand the sensitivity to price of various assumptions
- Selecting where and how to source hydrogen is a complex business challenge
- Most hydrogen produced today is produced in very large plants located near low-cost sources of natural gas, and co-located with the end-use application, such as petroleum refining, and ammonia and methanol production
- Future hydrogen markets are strongly aligned with carbon reduction goals, especially for so-called hard to abate sectors, such as:
 - Heavy transport
 - Aviation
 - Ammonia production
 - Methanol production
 - Steel manufacturing
- Each decarbonized end-use application requires carefully aligned hydrogen sourcing and distribution to ensure economics aligned with customer preferences and market adoption goals

Today's presentation is focused on a core set of production approaches


- Approaches evaluated
 - SMR w/CCS
 - Solar to Hydrogen
 - Solar to Hydrogen w/Clipping
 - Solar plus Storage
 - Biogas to Hydrogen
 - Grid Hydrogen California
 - Grid Hydrogen Louisiana
- The analysis is a starting point to illustrate key sourcing choices and their implications
- The models utilize discounted cash flows to calculate a price of hydrogen that covers operating costs, returns capital and provides a profit

Steam methane reforming with carbon capture and sequestration

Hydrogen output	300 tons/day
Natural gas for feedstock and steam generation	294 million therms/yr
Electricity for compressor, boiler feedwater pump, amine system and CO2 compression for pipeline	189,388 MWh/yr
Pipeline – length	100 miles
Pipeline – diameter	8 inches
CO2 capture	85% from combustion flue and process CO2
CO2 volume	1.25 million tons/yr

Cost of hydrogen \$2.86/kg

SMR with CCS – Capital Expenditures

Capital Expenditures	
Reformer	89,950,577
Air Compressor	765,972
Steam Boiler	250,000
Water Gas Shift	11,367,381
Amine AGR Unit	122,570,016
Heat Recovery Steam Generator	250,000
Pressure Swing Absorption	77,100,494
CO2 Pipeline	101,434,425
CO2 Storage	25,000,000
Total	428,688,865

Important factors to consider for SMR with CCS

- The pipeline and sequestration capital and operating costs are significant
- Developing shared CO2 infrastructure is critical to advance CCS projects
- CCS project locations will be driven by pipeline availability and being within a reasonable distance of depleted wells
- Methane leaks throughout the natural gas value chain from production to transmission and distribution are not insignificant
- According to EPA, leaks from gas pipelines were responsible for 21 million metric tons of CO2-equivalent emissions of methane in 2020

Solar to Hydrogen

Hydrogen output	300 tons/day
Solar system size	3,000 MW
Electrolyzer size	3,000 MW
Location	Blythe, California
Solar output	5,485,207 MWh/yr
Water consumption for feedstock	263 million gallons/yr
Electrolyzer capacity factor	20%
Capital expenditures	
Solar	\$1.82 billion
Electrolyzer	\$2.55 billion
Total capital expenditures	\$4.37 billion

Cost of hydrogen \$5.42/kg

In-the-Fence Solar to Hydrogen with Clipping

- Electrolyzer size is reduced while the solar system size is increased
- Clipped electrons are not monetized

In-the-Fence Solar to Hydrogen with Clipping

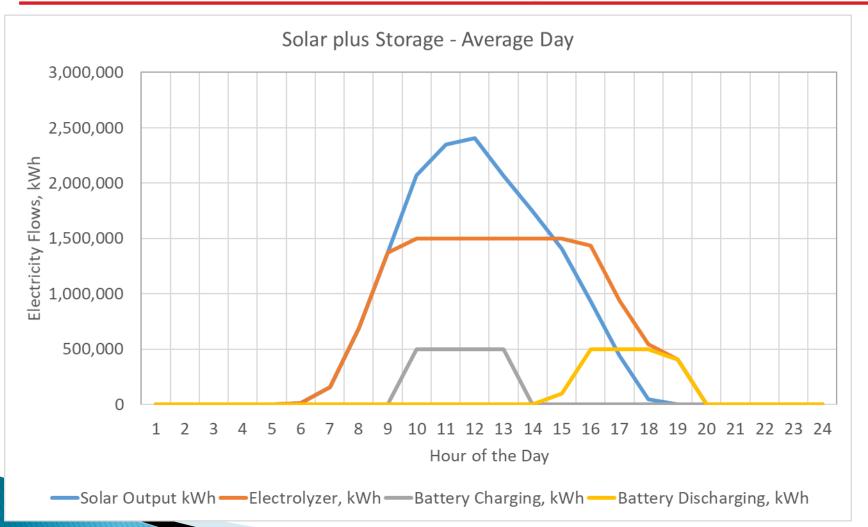
Hydrogen output	300 tons/day
Solar system size	3,249 MW
Electrolyzer size	1,917 MW
Location	Blythe, California
Solar output	5,940,478 MWh/yr
Solar output consumed by the electrolyzer	5,478,659 MWh/yr
Water consumption for feedstock	263 million gallons/yr
Electrolyzer capacity factor	33%
Capital expenditures	
Solar	\$1.97 billion
Electrolyzer	\$1.63 billion
Total capital expenditures	\$3.67 billion

Cost of hydrogen \$4.50/kg

Solar plus Storage

- Integrated storage to capture stranded electrons and reduce the size of the electrolyzer
- Impact on hydrogen cost was limited

Solar plus storage


Hydrogen output	291 tons/day
Solar system size	3,134 MW
Electrolyzer size	1,500 MW
Battery size	500 MW/2,000 MWh
Location	Blythe, California
Solar output	5,729,910 MWh/yr
Solar output consumed by the electrolyzer	5,313,289 MWh/yr
Water consumption for feedstock	263 million gallons/yr
Electrolyzer capacity factor	41.7%
Capital expenditures	
Solar	\$1.905 billion
Electrolyzer	\$1.275 billion
Battery	\$0.375 billion
Total capital expenditures	\$3.555 billion

Cost of hydrogen \$4.50/kg

www.velerity.com

Solar plus Storage

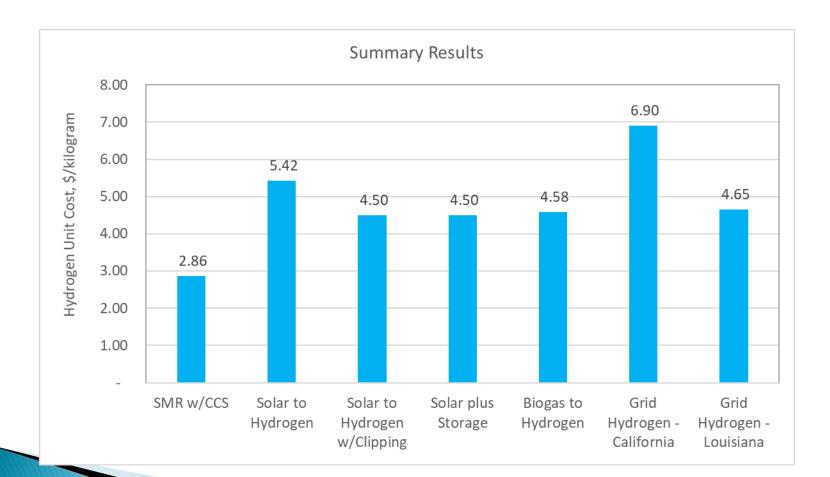
Biogas to Hydrogen

- Examples of sources of hydrogen from biogas and biomaterials include, at a minimum:
 - Wood waste pyrolysis
 - Landfill gas
 - Agricultural waste with anaerobic digestors
 - Wastewater treatment facilities with anaerobic digestors
- To simplify modelling, used a standard SMR system while varying the cost of the methane inputs
- Individual systems and configurations will have a range of input and output costs
- According to a 2019 study prepared for the American Gas Foundation, about 44 percent of prospective RNG projects can be developed at a cost of \$7 to \$20 per MMBTU, with a median cost among those of approximately \$18/MMBtu

Biogas to Hydrogen

Hydrogen output	300 tons/day
Renewable natural gas for feedstock and steam generation	294 million therms/yr
Electricity for compressor and boiler feedwater pump	163,874 MWh/yr
Renewable natural gas price	\$15/MMBtu
Capital Expenditures	
Reformer	89,950,577
Air Compressor	765,972
Steam Boiler	180,000
Water Gas Shift	11,367,381
Heat Recovery Steam Generator	150,000
Pressure Swing Absorption	77,100,494
Total	179,514,423

Cost of hydrogen \$4.58/kg



Grid Hydrogen

Hydrogen output	300 tons/day	300 tons/day
Electrolyzer Size	658 MW	658 MW
Electricity consumption	5,475,876 MWh	5,475,876 MWh
Water Consumption	263 million gallons/yr	263 million gallons/yr
Capital expenditure - Electrolyzer	\$559 million	\$559 million
Large Commercial Electric Rate	LADWP	Proxy for Entergy Louisiana
T&D Charges	\$264 million	\$166 million
Energy Cost	\$405 million	\$263 million
Total electricity costs	\$669 million	\$430 million
Effective Electricity Rate	\$0.1222/kWh	\$0.0785/kWh

Summary Results

